

návod k instalaci a provozu **Automatické přepínače** OTM_C_21D

– Automatické přepínače 340TM_C_21D rev. E / 15CC303015M0201 / CZ Před započetím práce na přepínači si pečlivě přečtěte tuto příručku a uschovejte si ji pro pozdější použití.

Obrázky uvedené v této příručce jsou pouze ilustrativní a nemusí přesně odpovídat skutečnému produktu.

Tento návod k obsluze může být aktualizován bez předchozího upozornění.

Varování! Nebezpečné napětí! Montáž smí provádět výhradně osoba s elektrotechnickou kvalifikací

Obsah

1.	SYMBOL	Y &POJMY	4
	1.1	Použité symboly	4
	1.2	Vysvětlení zkratek a pojmů	4
2.	PŘEHLEC	DNÉ INFORMACE O VÝROBKU	5
	2.1	Základní informace, obsah balení	5
	2.2	Spínací posloupnost přepínače OTM_C_21D	6
		2.2.1 Priorita vedení "Line 1" (výchozí režim)	7
		2.2.2 Žádné vedení nemá prioritu	8
		2.2.3 Režim ručního zpětného přepnutí	9
3.	RYCHLÉ I	UVEDENÍ DO PROVOZU	9
	3.1	Ruční provoz	9
	3.2	Automatický provoz	10
	3.3	Testování systému	11
		3.3.1 Místní test	11
		3.3.2 Dálkový test	11
	3.4	Uzamknutí, blokování	12
		3.4.1 Blokování elektrického provozu	12
		3.4.2 Blokování ručního provozu	12
	3.5	Komunikační modul Modbus	13
4.	UŽIVATI	ELSKÉ ROZHRANÍ A NASTAVENÍ	18
	4.1	Tlačítka	18
	4.2	LED signálky	18
	4.3	Nastavení otočných spínačů	19
	4.4	Nastavení DIP spínačů	20
	4.5	Svorky vstupů a výstupů	21
5.	TECHNI	CKÉ ÚDAJE	22
6.	MONTÁ	Ž	23
	6.1	Způsoby montáže	23
	6.2	Montážní rozměry	25
7.	VOLITEL	NÉ PŘÍSLUŠENSTVÍ	26
	7.1	Propojovací přípojnice	26
	7.2	Kryty svorek	27
	7.3	Pomocné kontakty	28
	7.4	Komunikační modul Modbus RTU	29
8.	ÚDŽBA /	A ODSTRAŇOVÁNÍ PROBLÉMŮ	30
	8.1	Údržba	30
	8.2	Odstraňování případných problémů	30
9.	SCHÉMA	A ZAPOJENÍ	31
	9.1	Zapojení ovládacích a signalizačních obvodů	31
	9.2	Zapojení silových obvodů	31

1. Symboly & pojmy

1.1 Použité symboly

Nebezpečné napětí: upozorňuje na situaci, kdy nebezpečně napětí může způsobit zranění osob nebo poškození zařízení.

 \wedge

Obecné varování: upozorňuje na situaci, kdy něco jiného, než elektrické zařízení může způsobit zranění osob nebo poškození zařízení.

Pozor: uvádí důležité informace nebo upozorňuje na situaci, která může mít negativní účinek na zařízení.

Informace: uvádí důležité informace o zařízení.

1.2 Vysvětlení zkratek a pojmů

OTM_C_21D	Přepínač s automatickým řízením záskoku; typové označení
LN1-Switch I	Napájecí vedení 1, např. hlavní napájecí vedení
LN2-Switch II	Napájecí vedení 2, např. záložní napájecí vedení pro případ
	nouzové situace
EMERG OFF	Při přijetí signálu EMRG OFF dojde k automatickému přepnutí
(požární systém)	jednotky řízení záskoku do polohy "O".
AUTO	Automatický režim
Dálkový test	Posloupnost testovacích kroků, při níž je testována funkčnost
	automatického přepínače.
Ts	Přepínací prodleva na záložní zdroj
TBs	Prodleva při zpětném přepnutí na normální zdroj
OV	Nastavitelná prahová hodnota přepětí
UV	Nastavitelná prahová hodnota podpětí

Tab. 1 Vysvětlení zkratek a pojmů

2. Přehledné informace o výrobku

2.1 Základní informace, obsah balení

Automatický přepínač OTM_C_21D je automatické přepínací zařízení (ATSE) které je možné použít pro automatické přepínání zátěže z normálního napájení na alternativní (záložní) napájení, a to jak v trojfázové, tak i jednofázové síti. Monitorovanými stavy jsou: ztráta napětí, ztráta fáze, detekované přepětí a podpětí, prodlevy při přepnutí, rozběh a doběh generátoru a funkce dálkového testování. Přepnutí zdrojů je možno provádět ruční ovládací pákou, lokálně tlačítky nebo plně automaticky. Do automatického režimu patří několik provozních metod: priorita linky 1, žádná priorita linky a režim ručního zpětného přepnutí.

Obr. 1 OTM_C_21D Automatický přepínač

- 1. Klika pro ruční ovládání
- 2. Místo pro pomocné kontakty
- 3. Tlačítko AUTO
- 4. Panel se slepým schéma
- 5. Přívody pro monitorování napětí
- 6. Zamykací úchytka pro visací zámek
- Blokovací západka pro uvolnění kliky a zamykání elektrického ovládání
- Zamykací úchytka pro zablokování ručního ovládání
- 9. DIP spínače
- 10. Otočné spínače
- 11. Svorky vstupů a výstupů
- 12. Přístup do slotu pro Modbus RTU

Balení přepínače obsahuje:

1. automatický přepínač, 2. kliku ručního ovládání, 3. odkládací držák pro kliku ručního ovládání, 4. konektor vstupů a výstupů, 5. montážní šrouby

2.2 Spínací posloupnost přepínače OTM_C_21D

2.2.1 Priorita vedení "Line 1" (výchozí režim)

Spínací posloupnost přístroje OTM_C_21D je možno shrnout do následujících kroků:

- Na vedení "Line 1" (LN1) dojde k poruše
- V případě ztráty fáze, přepětí či podpětí začne běžet přepínací prodleva Ts
- Rozběhne se generátor nouzového napájení. V případě výpadku nabíhá generátor okamžitě, v případě ztráty fáze, přepětí nebo podpětí po uplynutí přepínací prodlevy Ts (pokud je režim generátoru nastaven)
- Přepínač "Switch I" přepne do polohy 0
- Přepínač "Switch II" přepne do polohy I

Zpětnou spínací posloupnost je možno shrnout do následujících kroků:

- Na vedení "Line 1" se obnoví normální funkční stav
- Začne běžet nastavená prodleva Tbs pro zpětné přepnutí
- Přepínač "Switch II" přepne do polohy 0
- Přepínač "Switch I" přepne do polohy I
- Začne běžet nastavená prodleva Gs pro vypnutí generátoru
- Generátor vypne.

Obr. 2 Automatická spínací posloupnost přístroje OTM_C_2; Priorita vedení "Line 1"

2.2.2 Žádné vedení nemá prioritu

Spínací posloupnost přístroje OTM_C_21D je možno shrnout do následujících kroků:

- Na vedení "Line 1" (LN1) dojde k poruše
- V případě ztráty fáze, přepětí a podpětí začne běžet přepínací prodleva Ts
- Přepínač "Switch I" přepne do polohy 0
- Přepínač "Switch II" přepne do polohy I

Zpětnou spínací posloupnost je možno shrnout do následujících kroků:

- Vedení "Line 1" začne normálně fungovat
- Přepínač "Switch II" zůstane v poloze I
- Na vedení "Line 2" (LN2) se objeví porucha.
- Začne běžet nastavená prodleva pro zpětné přepnutí.
- Přepínač "Switch II" přepne do polohy 0
- Přepínač "Switch I" přepne do polohy I.

Obr. 3 Automatická spínací posloupnost přístroje OTM_C_21D; Žádné vedení nemá prioritu

V režimu "žádná priorita linky" není generátor aktivní a je třeba jej mít v nastavení DIP spínačů vypnut.

2.2.3 Režim ručního zpětného přepnutí

Spínací posloupnost přístroje OTM_C_21D je možno shrnout do následujících kroků:

- Na vedení Line 1 (LN1) dojde k poruše.
- V případě ztráty fáze, přepětí a podpětí začne běžet přepínací prodleva Ts
- Start generátoru. V případě výpadku napájení nabíhá generátor okamžitě, v případě ztráty fáze, přepětí nebo podpětí po uplynutí přepínací prodlevy Ts (pokud je režim generátoru nastaven)
- Přepínač "Switch I" přepne do polohy 0
- Přepínač "Switch II" přepne do polohy I

Zpětnou spínací posloupnost je možno shrnout do následujících kroků:

- Na vedení "Line 1" se obnoví normální funkční stav
- Přepínač zůstane v poloze II
- Na vedení "Line 2" (LN2) se objeví porucha
- Přepínač zůstane v poloze II
- Přepínač je možné přepnout zpět do polohy I jen ručně

Obr. 4 Automatická spínací posloupnost přístroje OTM_C_21D, Režim ručního zpětného přepnutí

3. Rychlé uvedení do provozu 3.1 Ruční provoz (místní ovládání)

Pro ovládání přepínače ručně:

1. Nasaďte kliku do přepínače. Kliku můžete nasadit v jakékoli poloze.

2. Po nasazení kliky se automatický přepínač sám nastaví do ručního režimu a v případě poruchy na napájecím vedení nebude přepínat automaticky. LED kontrolka AUTO na panelu se slepým schéma nesvítí.

Obr. 5 Ruční ovládání automatického přepínače

Při nasazení kliky přejde automatický přepínač do "ručního režimu" a automatický provoz je tedy vyřazen z činnosti.

Nemanipulujte s vodiči, když je přepínač pod napětím

!

Před připojením automatického přepínače na napájení proveďte ruční spínání a ověřte si tak, že přístroj normálně funguje.

Pokud je napájení "normální", klika není nasazena a není přítomen signál EMRG OFF, přejde jednotka automatického řízení záskoku, která byla již předtím připojena na napájení, do automatického režimu a přepne na hlavní napájecí vedení. Pokud nechcete, aby po počátečním uvedení do provozu přepnula jednotka do automatického režimu, ponechejte kliku zasunutou.

3.2 Automatický provoz

Aby přepínač OTM_C_21D mohl automaticky realizovat přepínací cykly podle předem nastaveného provozního režimu, musí se nacházet v automatickém režimu a LED kontrolka "Auto" musí svítit.

Pro ovládání přepínače automaticky:

Pokud je klika zasunuta:

- 1. Stlačte zamykací úchytku kliky a vysuňte kliku z přístroje.
- 2. Stiskněte tlačítko "AUTO", LED kontrolka "Auto" se rozsvítí a signalizuje, že přístroj přešel do automatického provozu.

Pokud klika není zasunuta:

- 1. Pokud LED kontrolka "Auto" bliká, Stiskněte tlačítko "AUTO", LED kontrolka "Auto" se rozsvítí a signalizuje, že přístroj přešel do automatického provozu.
- Automatický provoz je možný ve třech provozních režimech: priorita napájecího vedení "Line 1" (výchozí nastavení od výrobce), žádné vedení nemá prioritu a režim ručního zpětného přepnutí

Obr. 6 Nastavení přepínače OTM_C_21D do automatického (Auto) provozu

3.3 Testování systému

2.3.1 Místní test

Přístroj se nachází v automatickém režimu, LED kontrolka "Auto" svítí. Nyní je možno přepínat přístroj pomocí tlačítek I, O a II na předním panelu. Stlačením tlačítka "AUTO" se přístroj vrátí do automatického provozu.

2.3.2 Dálkový test

Postup je následující:

- 1. Připojte přístroj ke spínači dálkového testu podle obr. 7.
- 2. Zajistěte, aby se přepínač OTM_C_21D nacházel v automatickém režimu (LED kontrolka "Auto" svítí).
- Sepněte spínač dálkového testovacího signálu na dobu minimálně 100 ms, až LED kontrolka "Auto" začne blikat. To znamená, že automatický přepínač vstoupil do testovacího režimu.

V testovacím režimu pak automatický přepínač bude simulovat spínací cyklus, a nakonec se vrátí do původního stavu před aktivací testovacího režimu. např. je-li automatický přepínač v poloze I:

sepněte spínač dálkového testovacího a přístroj bude postupně přepínat do poloh: O \rightarrow pak II \rightarrow pak O \rightarrow a pak I. Dokud se automatický přepínač nevrátí do původního stavu, nevyvolá příchod dalšího testovacího signálu žádnou odezvu.

Pokud chcete zrušit testovací režim a vrátit se do automatického režimu, stiskněte v testovacím režimu tlačítko "AUTO". LED kontrolka "Auto" začne trvale svítit, což je normální stav.

4. Po skončení dálkového testu se přístroj OTM_C_21D automaticky vrátí do automatického režimu (LED kontrolka "Auto" svítí).

Obr. 7 Připojení dálkového testovacího signálu k OTM_C_21D

Po dobu testovací sekvence hlavní silové kontakty spínají.

V případě přerušení testovací sekvence v důsledku výpadku napájení, přejde přepínač po obnovení napájení do "automatického režimu".

3.4 Uzamknutí, blokování

3.4.1 Blokování elektrického provozu

Automatický přepínač je možno zamknout visacími zámky v jakékoli poloze. V takovém případě jsou všechny provozní režimy a testovací operace zablokovány a kliku nelze zasunout. Postup viz obr. 8:

Obr. 8 Blokování elektrického provozu

3.4.2 Blokování ručního provozu

Ve standardním případě je možno ruční provoz uzamknout pouze v poloze 0. Kliku je možno uzamknout visacími zámky tak, že vyklopíme zamykací úchytku z kliky a nasadíme do ní visací zámek – viz obr. 9:

Obr. 9 Blokování ručního provozu

3.5 Komunikační modul Modbus

OTM_C21D lze rozšířit o možnost komunikace pomocí volitelného externího modulu Modbus RTU.

Obr. 10 Komunikační modul Modbus RTU

Parameter	Value		
Modbus Address	132 (Default 1)		
Modbus Baud Rate	4800bps		
	9600bps (Default)		
	19200bps		
	38400bps		
Modbus Stop Bits	1 Stop Bit (Default)		
	2 Stop Bits		
Modbus Parity	None		
	Odd		
	Even (Default)		
Local/Remote	Local monitoring mode (Default)		
	Remote control mode		

3.5.1 Parametry Modbus

Tab. 2 Parametry Modbus pro OTM_C21D

3.5.2 Funkční kódy Modbus

Function code	Name
03(0x03)	Read Holding Registers
04(0x04)	Read Input Registers
06(0x06)	Write Single Register
16(0x10)	Write Multiple Registers
17(0x11)	Report Slave ID

Tab. 3 Funkční kódy Modbus pro OTM_C21D

3.5.3 OTM_C21D informace o registrech

Informace o registrech, hodnotách a přístupu jsou k dispozici v následující tabulce

Register	Address (DEC)	Function code (DEC)	Values
SWITCH I_STATUS	1	04	0=Open
			1=Closed
SWITCH II_STATUS	2	04	0=Open
			1=Closed
LN1_U1 VOLTAGE	3	04	Phase voltage for 2P/4P
LN1_U2 VOLTAGE	4	04	 Line Voltage for 3P Voltage at 1V accuracy
LN1_U3 VOLTAGE	5	04	(e.g. 230=230V)
LN2_U1 VOLTAGE	6	04	_
LN2_U2 VOLTAGE	7	04	_
LN2_U3 VOLTAGE	8	04	_
LN1_LINE_STATUS	9	04	0= Voltage OK
			1= No voltage
			2= Undervoltage
			3= Overvoltage
			4= Phase missing
LN2_LINE_STATUS	10	04	0= Voltage OK
			1= No voltage
			2= Undervoltage
			3= Overvoltage
			4= Phase missing
RATED_VOLTAGE	11	04	0=220/380V
			1=230/400V
			2=240/415V
UNDERVOLTAGE_THRESHOLD	12	04	5,10,15,20,25,30 %
OVERVOLTAGE_THRESHOLD	13	04	5,10,15,20,25,30 %
TRANSFER_DELAY_TS	14	04	0,1,2,3,5,10,15,20,25,30 s
RETURN_DELAY_TBS	15	04	0,5,10,20,30,60,120,300,600,900 s

Pokračování na další straně...

	Address (DEC)	Function code (DEC)	Values
MODBUS ADDRESS	16	03/06/16	132
MODBUS BAUD_RATE	17	03/06/16	0=4800
			1=9600
			2=19200
			3= 38400
MODBUS PARITY_CHECK	18	03/06/16	0=No parity
			1=Odd parity
			2=Even parity
MODBUS STOP_BIT	19	03/06/16	0=1 Stop bit
			1=2 Stop bit
DEVICE_WORKING_MODE	20	04	0=Manual switching mode
			1=Emergency off mode
			2=Local test mode (see 3.3.1)
			3=Remote test mode (see 3.3.2)
			4=Auto mode
LINE_PRIORITY	21	04	0=Line 1 priority
			1=No line priority
			2=Manual back switching
EMERGENCY_OFF_STATUS	22	04	0=Emergency off not happen or elimi- nated
			1=Emergency off happens
OPERATION_COUNTER	23	04	Number of switch position transitions
PRESENT_ALARM	24	04	0=No alarms
			1= Switch I transfer fail
			2= Switch II transfer fail
			3=Both I and II are ON
			4= Switch I transfer fail in emergency off
			5= Switch II transfer fail in emergency off

Pokračování na další straně...

Register (continued)	Address (DEC)	Function code (DEC)	Values
LAST_ALARM	25	04	0=No alarms
			1= Switch I transfer fail
			2= Switch II transfer fail
			3=Both I and II are ON
			4= Switch I transfer fail in emergency off
			5= Switch II transfer fail in emergency off
SW_VERSION	26	04	Bit8-15= Major SW version (e.g. 0x1A=26)
			Bit0-7 = Minor SW version (e.g. 0xAA=170)
PHASES	27	04	0= 3 phases with Neutral line
			1= 3 phases without Neutral line
			2= 1 phase
RATED_FREQUENCY	28	04	0=50Hz
			1=60Hz
GENERATOR_STOP_DELAY	29	04	0=30s
			1=240s
GENERATOR_USAGE	30	04	0= No Generator
			1= Generator In Use
GENERATOR_START	31	06	1=Start generator
CONTROL	32	06	1= Remote control to I
			2= Remote control to O
			3= Remote control to II
			4= Enter remote test function (see 3.3.2)
OPERATING_MODE	33	03/06	0=Local monitoring mode
			1= Remote control mode

Tab. 4 OTM_C21D informace o registrech

1

Konfigurace parametrů Modbus a funkce ovládání ATS jsou dostupné pouze tehdy, když OTM_C21D pracuje v režimu dálkového ovládání

Dálkové ovládání lze provozovat pouze v režimu automatického provozu

1

Po dálkovém ovládání musí být OTM_C21D resetován do režimu místního monitorování, poté se může vrátit do režimu "auto"

3.5.4 Kybernetické bezpečnost

Zřeknutí se odpovědnosti	Je výhradní odpovědností zákazníka poskytovat a nepřetržitě zajišťovat bezpečné spojení mezi produktem a zákaznickou sítí nebo jakoukoli jinou sítí. Zákazník je povinen zavést a udržovat veškerá vhodná opatření (včetně, nikoli však výhradně, instalace firewallů, aplikace autentizačních opatření, šifrování dat, instalace antivirových programů atd.) k ochraně produktu, sítě, jeho systém a rozhraní proti jakémukoli narušení bezpečnosti, neoprávněnému přístupu, rušení, vniknutí, úniku a/nebo krádeži dat nebo informací. ABB a její přidružené společnosti nenesou odpovědnost za škody a/nebo ztráty související s takovým porušením zabezpečení, neoprávněným přístupem, zásahem, vniknutím, únikem a/nebo krádeží dat nebo informací.
Bezpečné nasazení	Uživatel produktu by si měl být vědom toho, že nezabezpečená povaha sériového protokolu Modbus odhaluje komunikaci mezi produktem a řídicím systémem. Protokol nezajišťuje šifrování, autentizaci nebo integritu přenášených dat. Aby zařízení nefungovalo nebezpečným nebo nežádoucím způsobem kvůli škodlivým činnostem, musí být produkt umístěn v důvěryhodné síti, přísně omezený a v hostované části sítě nebo řídicího systému. Doporučení je také omezit fyzický přístup k produktu/systému tak, aby změny v systému mohly provádět pouze oprávněné osoby. Kromě toho může uživatel nastavit systém tak, aby spustil poplach při přerušení komunikace (zařízení přestane reagovat) a zkontrolovat, zda nenastal nějaký nebezpečný stav.

4. Uživatelské rozhraní a nastavení 4.1 Tlačítka

Obr. 11 Tlačítka

Tlačítko	Funkce	Poznámky
I ON	Přepnutí na vedení LN1	K dispozici pouze v
O OFF	Přepnutí do polohy 0	automatickém režimu a
II ON	Přepnutí na vedení LN2	režimu dálkového testování
Auto	Volba automatického režimu,	
Auto	výmaz poruch a zpětné nastavení (reset).	

Tab. 5 Tlačítka

4.2 LED signálky

Obr. 12 LED Signálky

LED	Stav	Význam
	svítí	Zdroj je k dispozici
LN1 / LN2	bliká	Přepětí, podpětí nebo ztráta fáze
	nesvítí	Zdroj není k dispozici
	svítí	Spínač I nebo II je v sepnutém stavu
1/11	nesvítí	Spínač I nebo II je v rozepnutém stavu
	bliká	Porucha při přepínání
	svítí	Přístroj se nachází v automatickém režimu
Auto	bliká	Přístroj v testovacím režimu, nebo má neplatné nastavení
	nesvítí	Přístroj se nachází v ručním režimu
	svítí	Vstup přijal nouzový signál
EIVING OFF	nesvítí	Žádný nouzový signál na vstupu

Tab. 6 LED Signálky

4.3 Nastavení otočných spínačů

Přepínací prodleva Ts: prodleva, která v automatickém režimu uplyne od okamžiku ztráty napájení z normálního zdroje do připojení k záložnímu zdroji. Volitelné možnosti jsou: 0, 1, 2, 3, 5, 10, 15, 20, 25 a 30 sekund.

Prodleva při zpětném přepnutí TBs: prodleva, která v automatickém režimu uplyne při přepnutí ze záložního zdroje na normální zdroj, (u něhož došlo k obnovení napájení). Volitelné možnosti jsou: 0, 5, 10, 20, 30, 60, 120, 300, 600 a 900 sekund.

Obr. 13 Otočné spínače pro prodlevu Ts a TBs

Prahová hodnota přepětí OV (%) a podpětí UV (%): vztažnou hodnotou pro OV (= přepětí) a UV (= podpětí) je jmenovité napětí automatického přepínače. Pokud je napětí vyšší než přednastavená hodnota OV nebo nižší jak přednastavená hodnota UV, dojde k automatickému přepnutí.

Hodnoty OV mohou být: 5%, 10%, 15%, 20%, 25% a 30%. Hodnoty UV mohou být: 5%, 10%, 15%, 20%, 25% a 30%.

Obr. 14 Otočné spínače pro OV a UV

4.4 Nastavení DIP spínačů

		0 1				•••		
1	2	3	12	34 5	56 6	78	9	9
Po	ole	Mo	ode	Vol	tage	Freq	GEN SEL	GEN stop delay

Sada 9 DIP spínačů se používá pro nastavení pracovních režimů automatického přepínače

DIP č.	Funkce	Nastavení					
1, 2	Nastavení	01	10	11	00		
	pólů	2 póly	3 póly	4 póly	Neplatné nastavení		
3, 4	Nastavení	01	10	11 (výchozí)	00		
	režimu	Žádné vedení nemá prioritu	Ruční zpětné přepnutí	Priorita vedení Line 1 (LN1)	Neplatné nastavení		
5,6	Nastavení	01	10	11	00		
	napětí	240V/415V AC	230V/400VAC	220V/380VAC	Neplatné nastavení		
7	Nastavení	0		1 (výchozí)	1 (výchozí)		
	frekvence	60 Hz		50 Hz			
8	Volba	0		1 (výchozí)			
	generátoru	Ne		Ano			
9	Nastavení	0		1 (výchozí)			
	prodlevy	240 s		30 s			
	zastavení						
	generátoru						

Tab. 7 DIP spínače

i

Sada 9 DIP spínačů se používá pro nastavení parametrů přepínače podle místních podmínek použití. Pokud nenastavíte tyto DIP spínače přesně, dojde k poruše při testování a přepínání. Proto si pečlivě přečtěte tento návod a před použitím přístroje nastavte správné parametry.

Generátor nelze použít bez priority vedení. V tomto režimu ponechte nastavení generátoru "O".

4.5 Svorky vstupů a výstupů

Automatický přepínač má 11 signálových uživatelských svorek pro připojení vstupních a výstupních signálů.

Obr. 15 Svorky

Svorka č.	Funkce
1, 2	Vstupní svorky pro dálkový test: připojení spínacího kontaktu. Při
	sepnutí v trvání minimálně 100 ms přejde přístroj do dálkového
	testovacího režimu.
3, 4	Vstupní svorky pro signály 24VDC EMRG OFF. Pokud tyto signály
	trvají alespoň 1 s, automatický přepínač přejde do polohy EMRG OFF
	a LED kontrolka EMRG OFF se rozsvítí. V takovém případě
	automatický přepínač nemůže přejít do automatického ani
	testovacího režimu a povoleno je pouze její ovládání klikou. Jakmile
	tento signál skončí, stiskněte "AUTO" a vystupte z režimu nouzového
	signálu EMRG OFF.
5, 6	Výstup pro spouštěcí signál generátoru. Pokud ve funkci záložního
	zdroje je použit generátor, používá se tento signál pro startování
	(spínací signál) a zastavení (rozpínací signál) generátoru. Jakmile
	automatický přepínač přepne na normální napájecí vedení, pak po
	uplynutí přednastavené prodlevy pro zastavení generátoru (viz
	nastavení 9. DIP spínače – kap. 4.3 – nastavení prodlevy pro zastavení
	generátoru) generátor zastaví.
7, 8, 9	Výstupy pro indikaci stavu sepnutí jednotlivých spínačů.
10, 11	Výstup signalizace Alarm: vysílá nepřetržitý signál, když je
	automatický přepínač v režimu EMRG OFF. V tomto režimu nelze
	provádět automatické operace, přepínač lze ovládat pouze ručně
	klikou.
Výstupní	Pro správnou činnost výstupních kontaktů relé je nutné přivést
kontakty	externí napětí 24V DC nebo do 250V AC max. 3A AC-1

5. Technické údaje

Automatický přepínač	Parametry	
Jmenovité provozní napětí Ue		
1-fázové (2p)	220240 V AC, 50 nebo 60 Hz	
3-fázové (3p/4p)	380/400/415 V AC, 50 nebo 60 Hz	
Rozsah provozního napětí	0,71,3 Ue	
Měřicí přesnost	±3 %	
Spínací úhly	90° (O-I, I-O, O-II, II-O)	
	180° (I-O-II, II-O-I)	
Doba vypnutí (OFF)	0,60,7 s	
Celková doba přepnutí	2,5 s	
Elektromagnetická kompatibilita	třída B	
Parametry výstupního relé	3 A, AC1, 250 V	
Stupeň krytí	IP20, přední panel	
Jmenovité impulzní výdržné napětí	8 kV (6 kV pro ovládací obvod; před	
Uimp	provedením dielektrické zkoušky	
	výdržným napětím odpojte napájecí	
	vedení od ovládacího obvodu)	
Povolená pracovní teplota okolí	-2555 °C	
Povolená skladovací teplota okolí	-4070 °C	
Instalační nadmořská výška	max. 2000 m	

Tab. 9 Technické údaje

6. Montáž

6.1. Způsoby montáže

Automatický přepínač se montuje šrouby na montážní desku nebo na lištu DIN.

Pevné upevnění k montážní desce se provádí následujícím způsobem:

Obr. 17 Upevnění přepínače OTM_C_21D pomocí šroubů na desku

Upevnění k liště DIN se provádí následujícím způsobem:

Nejprve vhodným nástrojem vyklopte západku – viz obr. 18

Obr. 18 Upevnění přepínače OTM_C_21D na lištu DIN

Po usazení přepínače na lištu DIN zatlačte na západky zpátky, takto sestavu zafixujte.

Obr. 19 Upevnění přepínače OTM_C_21D na lištu DIN

Po usazení automatického přepínače na lištu DIN je třeba zatlačit západky zpět a takto zafixovat celou sestavu. Pokud to neučiníte, může přístroj spadnout.

6.2. Montážní rozměry

Obr. 20 Montážní rozměry

7. Volitelné příslušenství

7.1 Propojovací přípojnice

Obr. 21 Propojovací přípojnice

7.2 Kryty svorek

561.22 Myty Svorek

7.3 Pomocné kontakty

OA710/OA1G01

I

Obr. 23 Pomocné kontakty

7.4 Komunikační modul Modbus RTU

Obr. 24 Komunikační modul Modbus RTU

Neodstraňujte kryt přepínače, pokud modul Modbus RTU není připraven k instalaci.

Pokud je třeba modul Modbus RTU odstranit, nalepte přes otvoru kryt, abyste ochránili přepínač před znečištěním.

8. Údržba a odstraňování problémů 8.1 Údržba

Má-li být zaručena provozní spolehlivost automatického přepínače, je třeba provádět jedenkrát za 3 měsíce pravidelné spínací zkoušky a takto ověřit správnost funkce.

8.2 Odstraňování případných problémů

Č.	Popis problému	Možná příčina	Odstranění
1	Napájení funguje normálně, avšak LED signálky nesvítí	Přívod pro monitorování napětí do řídicí jednotky není připojen k silové svorce přepínače	Zkontroluje a připojte přívod pro monitorování napětí do řídicí jednotky
2	LED kontrolka napájení funguje normálně, avšak LED "Auto" nesvítí, příp. nereaguje na stlačování tlačítka "AUTO"	Není vysunuta klika pro ruční ovládání, příp. není odstraněn zámek blokování elektrického provozu	Vysuňte kliku, příp. odstraňte visací zámek a pak stiskněte tlačítko "AUTO"
3	V případě poruchy na prioritním napájecím vedení neproběhne přepnutí na alternativní napájecí zdroj správným způsobem.	 Automatický přepínač není nastaven do automatického režimu. Porucha na obou zdrojích napájení. 	 Zajistěte, aby automatický přepínač fungoval v automatickém režimu. zkontrolujte, zda není porucha současně na obou zdrojích napájení.
4	Porucha funkce EMRG OFF	 Zkontrolujte, zda signál EMRG OFF má hodnotu 24 V DC. Signál EMRG OFF má příliš krátké trvání. 	Připojte signál EMRG OFF správným způsobem. Měl by mít hodnotu pouze 24 V DC a trvání ≥ 1 s.
5	LED kontrolka "Auto" bliká. Nereaguje na stlačování tlačítek	 Nesprávné nastavení DIP spínačů. Je aktivován generátor (ON), ale přitom je nastaven režim bez priority napájecího vedení. 	Zkontrolujte, zda nastavení DIP spínače odpovídá parametrům napájecího zdroje. Pokud není stanovena priorita napájecího vedení. Nastavte generátor do režimu OFF
6	LED "l" nebo "ll" bliká	Přepínací úkony nejsou provedeny, a tedy není dosaženo očekávaného výsledku	Nastavte přepínač ručně do polohy "O" a pak stiskněte tlačítko "AUTO", čímž stav resetujete
7	Napájecí zdroj funguje a LED kontrolka bliká	Nesprávné připojení nulového (N) vodiče	Připojte vodič správným způsobem
8	Přepnutí nelze ovládat modulem Modbus RTU	Přepínač je v režimu místního monitorování, dálkové ovládání není k dispozici	Upravte přepínač na režim dálkového ovládání, pak jsou dostupné příkazy pro vzdálená přepnutí
9	Parametry modulu Modbus RTU nelze měnit	Přepínač je v režimu místního monitorování, úprava parametrů není možná	Upravte přepínač na režim dálkového ovládání, pak je k dispozici úprava parametrů

Tab. 10 Odstraňování případných problémů

9. Schéma zapojení

9.1 Zapojení ovládacích a signalizačních obvodů

Viz kapitola 4.5 Svorky vstupů a výstupů

9.2 Zapojení silových obvodů

Obr. 23 Schéma zapojení silových obvodů

ABB s.r.o., Elektrotechnika Heršpická 13, 619 00 Brno

Kontaktní centrum: 800 312 222 wwww.abb.cz/nizke-napeti

Společnost ABB si vyhrazuje právo na provádění technických změn a úpravu obsahu tohoto dokumentu bez nutnosti předchozího oznámení. Pokud jde o objednávky platí dohodnuté konkrétní hodnoty. ABB nepřebírá jakoukoli odpovědnost za případné chyby nebo opomenutí informací v tomto dokumentu.

ABB si vyhrazuje všechna práva na tento dokument a obsah/ vyobrazení v něm obsažená. Každá reprodukce, zveřejnění třetím stranám nebo využívání jeho obsahu – jak celku tak části bez předchozího písemného souhlasu ABB, je zakázáno.

Copyright ©2021 ABB Všechna práva vyhrazena